Mathématiques

Question

Bonjour j'espère que vous allez bien est-ce que une personne qui serait disponible pour m'aider à faire un exercice en maths que je devrais rendre avant 1h voilà merci beaucoup à la personne qui va m'aider car je ne comprends pas trop comment effectuer cet exercice merci beaucoup en avance
Bonjour j'espère que vous allez bien est-ce que une personne qui serait disponible pour m'aider à faire un exercice en maths que je devrais rendre avant 1h voil

1 Réponse

  • Réponse :

    1) Etudions le signe de [tex]I_{n+1}-I_n[/tex]

    [tex]I_{n+1}-I_n=\int\limits^1_0 {\frac{e^x}{(1+x)^{n+1}} } \, dx -\int\limits^1_0 {\frac{e^x}{(1+x)^{n}} } \, dx\\I_{n+1}-I_n=\int\limits^1_0 {(\frac{e^x}{(1+x)^{n+1}}-\frac{e^x}{(1+x)^{n}} }) } \, dx \\I_{n+1}-I_n=\int\limits^1_0 {\frac{e^x-e^x(1+x)}{(1+x)^{n+1}} } \, dx\\I_{n+1}-I_n=\int\limits^1_0 {\frac{-xe^{x}}{(1+x)^{n+1}} } \, dx\\I_{n+1}-I_n=-\int\limits^1_0 {\frac{xe^{x}}{(1+x)^{n+1}} } \, dx\\[/tex]

    On a pour tout x de [0;1] :

    [tex]xe^{x}>0\\(1+x)^{n+1}>0\\[/tex]

    Donc [tex]\frac{xe^{x}}{(1+x)^{n+1}}>0[/tex] et par positivité de l'intégrale : [tex]\int\limits^1_0 {\frac{xe^{x}}{(1+x)^{n+1}} } \, dx >0\\[/tex]

    d'où [tex]-\int\limits^1_0 {\frac{xe^{x}}{(1+x)^{n+1}} } \, dx < 0\\[/tex]

    Ansi [tex]I_{n+1}-I_n < 0[/tex]

    La suite (In) est décroissante.

    De plus [tex]\frac{e^x}{(1+x)^n} >0[/tex] et est continue sur [0; 1]

    Donc [tex]I_n > 0[/tex] par positivité de l'intégrale

    La suite(Iₙ) est décroissante et est minorée par 0 donc la suite (Iₙ) converge.

    2)

    [tex]0\leq x\leq 1\\1\leq e^x\leq e\\[/tex]

    et (1+x)ⁿ > 0 sur [0;1]

    [tex]\frac{1}{(1+x)^n} \leq \frac{e^x}{(1+x)^n} \leq \frac{e}{(1+x)^n}[/tex]

    Par conservation de l'ordre de l'intégrale on a :

    [tex]\int\limits^1_0 {\frac{1}{(1+x)^n}} \, dx \leq \int\limits^1_0 {\frac{e^x}{(1+x)^n}} \, dx \leq \int\limits^1_0 {\frac{e}{(1+x)^n}} \, dx \\[/tex]

    [tex][\frac{1}{-n+1}\times\frac{1}{(1+x)^{n-1}}]_0^1 \leq \int\limits^1_0 {\frac{e^x}{(1+x)^n}} \, dx \leq [\frac{e}{-n+1}\times\frac{1}{(1+x)^{n-1}}]_0^1 \\[/tex]

    [tex]\frac{1}{-n+1}\times\frac{1}{2^{n-1}}-(\frac{1}{-n+1}\times 1) \leq I_n\leq \frac{e}{-n+1}\times\frac{1}{2^{n-1}}-(\frac{e}{-n+1}\times 1) \\\\-\frac{1}{n-1}\times(\frac{1}{2^{n-1}}-1) \leq I_n\leq -\frac{e}{n-1}\times(\frac{1}{2^{n-1}}-1)\\\\\frac{1}{n-1}\times(1-\frac{1}{2^{n-1}}) \leq I_n\leq \frac{e}{n-1}\times(1-\frac{1}{2^{n-1}})\\[/tex]

    [tex]\lim_{n \to +\infty} \frac{1}{n-1} =0[/tex]   et  [tex]\lim_{n \to +\infty} \frac{e}{n-1} =0[/tex]

    [tex]\lim_{n \to +\infty} (\frac{1}{2} )^{n-1}=0\\\lim_{n \to +\infty} (1 -(\frac{1}{2} )^{n-1})=1\\[/tex]

    par produit des limites  [tex]\lim_{n \to +\infty} \frac{1}{n-1}(1-\frac{1}{2^{n-1}})=0[/tex]  et  [tex]\lim_{n \to +\infty} \frac{e}{n-1}(1-\frac{1}{2^{n-1}})=0[/tex]

    Donc d'après le théorème des gendarmes

    [tex]\lim_{n \to +\infty} I_n =0[/tex]