Mathématiques

Question

Bonjour tous le monde! Voilà, j'ai un DM et j'ai un peu de mal avec les fonctions cos et sin, donc si vous avez des pistes ou quelque chose, merci :)!


On considère la fonction  f  définie par : [tex]f(x)=cos^3x-sin^3x[/tex]

 

1) Démontrer que f est [tex]2\pi[/tex]-périodique.

 

2) a.  Démontrer que pour tout réel x : [tex]\sqrt{2}cos(x-\frac{\pi}{4})=cosx+sinx[/tex]
    b. Démontrer que pour tout réel x : [tex]f'(x)=-3\sqrt{2}(sinx)(cosx)cos(x-\frac{\pi}{4})[/tex]

3) A l’aide d’un tableau de signes, déterminer le signe de la dérivée de f sur [tex][-\pi;\pi][/tex] et dresser le tableau de variations de  f  sur cet intervalle.

4) Tracer la courbe représentative de  f sur l’intervalle [tex][-\pi;\pi ][/tex] .

5) a.  Montrer que pour tous réels a et b, on a l’égalité : [tex]a^3-b^3=(a-b)(a^2+ab+b^2)[/tex].
    b. Résoudre dans  l’équation f(x)=0.

 

 

 

 

 

1 Réponse

  • 2a : cos(a-b)=cosacosb-sinasinb appliques avec a=x et b=π/4

     

    f'(x)=-3*(cosx)^2*sinx-3*sin(x)^2*cos(x)=-3(sinx)(cos(x)(sinx+cosx) et on applique 2a.

     

    3 c'est evident a faire.

     

    5 f(x)=(cosx-sinx)(1+sinxcosx) donc nulle si sinx=cosx ou si sin(2x)=-1/2

     

     

     

Autres questions